References

- Cotton, F. A. & Czuchajowska, J. (1990). Polyhedron, 9, 2553-2566.
- Das, R., Nanda, K. K., Mukherjee, A. K., Mukherjee, M., Helliwell, M. & Nag, K. (1993). J. Chem. Soc. Dalton Trans. pp. 2241-2246.
- Debaerdemaeker, T., Germain, G., Main, P., Refaat, L. S., Tate, C. & Woolfson, M. M. (1988). MULTAN88. A System of Computer Programs for the Automatic Solution of Crystal Structures from X-ray Diffraction Data. Univs. of York, England, and Louvain, Belgium.
- Gabe, E. J., Le Page, Y., Charland, J.-P., Lee, F. L. & White, P. S. (1989). J. Appl. Cryst. 22, 384–387.
- Hancock, R. D., Dobson, S. M., Evers, A., Wade, P. W., Ngwenya, M. P., Boeyens, J. C. A. & Wainwright, K. P. (1988). J. Am. Chem. Soc. 110, 2788–2794.
- Henrick, K., Lindoy, L. F., McPartlin, M., Tasker, P. A. & Wood, M. P. (1984). J. Am. Chem. Soc. 106, 1641-1645.
- Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
- Motherwell, W. D. S. & Clegg, W. (1978). PLUTO. Program for Plotting Molecular and Crystal Structures. Univ. of Cambridge, England.
- Nanda, K. K., Das, R., Venkatsubramanian, K., Paul, P. & Nag, K. (1993). J. Chem. Soc. Dalton Trans. pp. 2515–2520.
- Nardelli, M. (1983). Comput. Chem. 7, 95-98.
- Nugent, W. A. & Mayer, J. M. (1988). Metal-Ligand Multiple Bonds, p. 160. New York: Wiley.
- Sheldrick, G. M. (1976). SHELX76. Program for Crystal Structure Determination. Univ. of Cambridge, England.
- Sheldrick, G. M. (1993). SHELXL93. Program for Crystal Structure Refinement. Univ. of Göttingen, Germany.

Acta Cryst. (1994). C50, 1207-1209

Bis(o-methoxyphenyl)tin Dibromide

JENNIFER-NICOLA ROSS AND JAMES WARDELL

Department of Chemistry, University of Aberdeen, Meston Walk, Aberdeen AB9 2UE, Scotland

GEORGE FERGUSON

Department of Chemistry and Biochemistry, University of Guelph, Guelph, Ontario, Canada NIG 2W1

JOHN N. LOW

Department of Applied Physics and Electronic and Manufacturing Engineering, University of Dundee, Dundee DD1 4HN, Scotland

(Received 17 February 1994; accepted 7 April 1994)

Abstract

The Sn atom in the title compound, $[SnBr_2(C_7H_7O)_2]$, has a distorted tetrahedral coordination geometry. There are indications of weak Sn···O intramolecular interactions.

©1994 International Union of Crystallography Printed in Great Britain – all rights reserved

Comment

A recent crystal structure determination of tris(*o*-methoxyphenyl)tin iodide (Howie, Ross, Wardell & Low, 1994) provided some evidence of weak $Sn \cdots O$ intramolecular coordination; the shortest $Sn \cdots O1$ distance was 2.965 (7) Å with an I—Sn $\cdots O1$ angle of 152.1 (1)°.

The crystal structure of the title compound, (I), has now been determined. The Sn...O intramolecular separations [2.90(1) and 2.92(1)Å] provide indications of weak tin-oxygen coordinations. The constraints of the ortho-disubstituted arvl system result in the four-membered chelate rings being highly strained. Of interest, there are significant differences between the valency angles Sn1-C1A-C2A and Sn1-C1A-C6A [114.2 (6) and 125.9 (6)°, respectively], and Sn1-C1B-C2B and Sn1-C1B-C6B [114.9(6) and $124.9(6)^{\circ}$, respectively]; these values allow the Sn atom to approach each of the two O atoms more closely. The differences in the exocyclic valency angles involving each of the O atoms and the aryl-ring C atoms are generally found in methoxyaryl compounds (Howie, Ross, Wardell & Low, 1994), and so cannot be used to confirm tin-oxygen interactions.

The Sn—Br bond lengths in the present study [2.480 (2) and 2.481 (2) Å], are much shorter than those found for the distorted octahedral bis(C,N)-chelate complex bis(8-dimethylamino-1-naphthyl)tin dibromide [2.610 (2) and 2.623 (2) Å; Jastrzebski, 1991]. The C—

Fig. 1. Perspective view of the molecule.

Acta Crystallographica Section C ISSN 0108-2701 ©1994 C5A

C6A C1B

C2B

O2B

C6B

C21B C3BC4BC5B

Sn—C $[124.7(3)^{\circ}]$ and Br—Sn—Br $[103.9(1)^{\circ}]$ valency angles, and Sn-Br bond lengths in the title compound are more like those found for the essentially four-coordinate molecules [SnBr₂(C₂H₅)₂] $[135.9(10), 98.5(1)^{\circ}$ and 2.505(4)Å, respectively Sn1 (Alcock & Sawyer, 1977)] and $[SnBr_2(C_6H_{11})_2]$ Br1 $[133.8 (8)^{\circ}, 98.3 (8)^{\circ} \text{ and } 2.492 (3) - 2.516 (2) \text{ Å, respec-}$ Br2 tively (Ganis, Valle, Furlani & Tabliavini, 1986)], C1AC₂A than those of the six-coordinate complex bis(8-O2Adimethylamino-1-naphthyl)tin dibromide (Jastrzebski, C21A C3A 1991). C4A

In [SnBr₂(C₂H₅)₂], secondary and weak intermolecular interactions [Sn $\cdot \cdot \cdot$ Br 3.777 (4) Å and Br—Sn $\cdot \cdot \cdot$ Br $179.5(5)^{\circ}$ were also reported. The shortest intermolecular Sn \cdot · ·Br contacts in [SnBr₂(C₇H₇O)₂] are, however, ca 5.5 Å.

Experimental

The title compound was prepared from $[Sn(C_7H_7O)_4]$ and Br₂ in CHCl₃, and recrystallized from hexane-acetone (1:1); m.p. 416-417 K.

Crystal data

$[SnBr_{2}(C-H-O)_{2}]$	Ma Ka radiation
$M_r = 492.76$	$\lambda = 0.71067 \text{ A}$
Monoclinic	Cell parameters from 25
$P2_1/n$	reflections
<i>a</i> = 14.0487 (24) Å	$\theta = 14.05 - 21.65^{\circ}$
b = 7.5563 (7) Å	$\mu = 6.32 \text{ mm}^{-1}$
c = 16.9279(21) Å	T = 293 K
$\beta = 113.409 (9)^{\circ}$	Thin plate
V = 1649.1 (4) Å ³	$0.417 \times 0.375 \times 0.069 \text{ mm}$
Z = 4	Colourless
$D_x = 1.985 \text{ Mg m}^{-3}$	
Data collection	
Enraf-Nonius CAD-4	$R_{\rm int} = 0.017$
diffractometer	$\theta_{\rm max} = 26.88^{\circ}$
$\theta/2\theta$ scans	$h = -17 \rightarrow 17$
Absorption correction:	$k = 0 \rightarrow 9$
empirical (ψ scan)	$l = 0 \rightarrow 21$
$T_{\min} = 0.304, T_{\max} =$	3 standard reflections

monitored every 60

intensity variation: 2.5%

reflections

Extinction correction:

Extinction coefficient:

Atomic scattering factors

from International Tables

phy (1974, Vol. IV, Table

for X-ray Crystallogra-

Larson (1970)

83 (12)

2.2B)

 $T_{\min} = 0.304, T_{\max} =$ 0.999 3688 measured reflections 3576 independent reflections 2131 observed reflections $[I > 2.5\sigma(I)]$

Refinement

Refinement on F R = 0.043wR = 0.050S = 1.202131 reflections 173 parameters $w = 1/[\sigma^2(F) + 0.0008F^2]$ $(\Delta/\sigma)_{\rm max} = 0.001$ $\Delta \rho_{\rm max} = 0.82 \ {\rm e} \ {\rm \AA}^{-3}$ $\Delta \rho_{\rm min} = -0.72 \ {\rm e} \ {\rm \AA}^{-3}$

Table 1. Fractional atomic coordinates and equivalent isotropic displacement parameters (Å²)

$$U_{\rm eq} = (1/3) \sum_i \sum_j U_{ij} a_i^* a_j^* \mathbf{a}_i \cdot \mathbf{a}_j.$$

x	y	Ζ	U_{ea}
0.78992 (5)	0.38233 (7)	0.01419 (4)	0.0433 (4)
0.87630 (9)	0.09407 (14)	0.01866 (7)	0.0735 (8)
0.93584 (9)	0.58836 (15)	0.08829 (7)	0.0760 (7)
0.7193 (6)	0.4690 (11)	-0.1144(5)	0.042 (5)
0.6425 (7)	0.3571 (11)	-0.1678 (5)	0.045 (5)
0.6221 (5)	0.2146 (8)	-0.1264 (4)	0.059 (4)
0.5713 (12)	0.0656 (15)	-0.1784 (9)	0.095 (10)
0.5898 (7)	0.3947 (13)	-0.2542 (6)	0.056 (6)
0.6160 (8)	0.5426 (14)	-0.2870 (6)	0.060(7)
0.6904 (8)	0.6571 (14)	-0.2360(7)	0.065 (7)
0.7446 (7)	0.6215 (12)	-0.1478 (6)	0.056 (6)
0.7120(7)	0.3498 (11)	0.0976 (5)	0.046 (5)
0.6453 (7)	0.4870(11)	0.0957 (6)	0.048 (6)
0.6429 (6)	0.6207 (8)	0.0419 (4)	0.068 (5)
0.5913 (10)	0.7812 (14)	0.0458 (8)	0.088 (9)
0.5886 (8)	0.4802 (14)	0.1480 (7)	0.065 (7)
0.6026 (9)	0.3364 (16)	0.2012 (7)	0.067 (7)
0.6680 (9)	0.2008 (15)	0.2039 (7)	0.071 (8)
0.7235 (7)	0.2059 (12)	0.1512 (6)	0.055 (6)

Table 2. Selected geometric parameters (Å, °)

		-	
Sn1Br1	2.4799 (11)	C4A—C5A	1.368 (16)
Sn1—Br2	2.4813 (12)	C5A—C6A	1.406 (14)
Sn1C1A	2.106 (8)	C1B—C2B	1.390 (13)
Sn1—C1B	2.117 (9)	C1B—C6B	1.384 (12)
C1AC2A	1.386 (12)	C2B—O2B	1.352 (11)
C1A—C6A	1.390 (13)	C2B—C3B	1.407 (14)
C2A—O2A	1.376 (10)	O2B—C21B	1.428 (12)
C2A—C3A	1.381 (12)	C3B—C4B	1.375 (16)
O2AC21A	1.434 (13)	C4BC5B	1.366 (17)
C3A—C4A	1.362 (15)	C5BC6B	1.398 (15)
Br1-Sn1-Br2	103.87 (5)	C1A—C2A—O2A	114.2 (7)
Br1-Sn1-C1A	109.17 (23)	02AC2AC3A	124.7 (8)
Br1—Sn1—C1B	104.72 (24)	C2A—O2A—C21A	117.0 (8)
Br2—Sn1—C1A	106.42 (23)	Sn1—C1B—C2B	114.9 (6)
Br2-Sn1C1B	106.14 (22)	Sn1C1BC6B	124.9 (7)
C1A—Sn1—C1B	124.7 (3)	C2B—C1B—C6B	120.2 (8)
Sn1C1AC2A	114.2 (6)	C1BC2BO2B	114.2 (8)
Sn1—C1A—C6A	125.9 (6)	O2B—C2B—C3B	125.7 (8)
C2A—C1A—C6A	119.9 (8)	C2B-02B-C21B	118.7 (8)

The structure was solved by the heavy-atom method. H atoms were included as riding atoms in calculated positions, the C-H distance being fixed at 0.95 Å. Data collection was performed with CAD-4 Software; CELDIM was used for cell refinement (Enraf-Nonius, 1989). Data reduction, structure solution, structure refinement, molecular graphics and preparation of material for publication were performed using the NRC-VAX set of programs (Gabe, Le Page, Charland, Lee & White, 1989).

Lists of structure factors, anisotropic displacement parameters and H-atom coordinates have been deposited with the IUCr (Reference: HA1107). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

References

- Alcock, N. W. & Sawyer, J. F. (1977). J. Chem. Soc. Dalton Trans. p. 1090.
- Enraf-Nonius (1989). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands.

Flack, H. (1983). Acta Cryst. A39, 876-881.

- Gabe, E. J., Le Page, Y., Charland, J.-P., Lee, F. L. & White, P. S. (1989). J. Appl. Cryst. 22, 384–387.
- Ganis, P., Valle, G., Furlani, D. & Tabliavini, G. (1986). J. Organomet. Chem. 302, 165-170.
- Howie, R. A., Ross, J.-N., Wardell, J. L. & Low, J. N. (1994). Acta Cryst. C50, 229-231.
- Jastrzebski, J. T. B. H. (1991). PhD thesis, Rijksuniversiteit, Utrecht, The Netherlands.
- Larson, A. C. (1970). Crystallographic Computing, edited by F. R. Ahmed, S. R. Hall & C. P. Huber, pp. 291-294. Copenhagen: Munksgaard.
- Rogers, D. (1981). Acta Cryst. A37, 734-741.

Acta Cryst. (1994). C50, 1209–1211

Chlorobis $\{2-[(dimethylamino)methyl]-phenyl-<math>C^1$, $N\}$ (pyridine) vanadium(III)

ANTHONY L. SPEK

Bijvoet Center for Biomolecular Research, Department of Crystal and Structural Chemistry, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands

JILLES J. H. EDEMA

Department of Organic Chemistry, Groningen University, Nijenborgh 4, 9747 AG Groningen, The Netherlands

SANDRO GAMBAROTTA

Department of Chemistry, University of Ottawa, Ottawa, Ontario, Canada K1N 6N5

(Received 28 March 1994; accepted 20 April 1994)

Abstract

The octahedral coordination of the tervalent bis-aryl vanadium complex $[VCl(C_5H_5N)(C_9H_{12}N)_2]$ is completed by one pyridine and one Cl ligand with a V—Cl distance of 2.395 (2) Å.

Comment

Divalent and tervalent vanadium ions play a significant role in biological systems (Robson *et al.*, 1986). Nitrogen fixation and reduction (Denisov, Efimov, Shuvalova, Shilova & Shilov, 1970; Shilov *et al.*, 1971) is an important phenomenon with regard to the activity of V^{II} and V^{III} and has been studied by a number of research groups.

The presence of either alkoxo or alkyl groups in the coordination sphere of the V atom may account for this particular type of activity of the transition metal. In a previous report, we described the formation of a V^{II} dinitrogen complex (Edema, Gambarotta & Meetsma, 1989) bearing *ortho*-dimethylaminomethylphenyl ligands (*o*-Me₂NCH₂C₆H₄). The highly reductive power of this complex was investigated by oxidation chemistry. We found that the dinitrogen species [{V(*o*-Me₂CH₂C₆H₄)₂(py)}₂(μ -N₂)] reacted smoothly with one equivalent of CuCl to release dinitrogen and concomittantly form the tervalent title compound (I), [VCl(*o*-Me₂CH₂C₆H₄)₂(py)], as a deep-red crystalline solid.

The geometry of the present V^{III} chlorine complex (Fig. 1) resembles closely that of its V^{II} dinitrogen precursor. However, comparable V—C bonds are now significantly shorter, *e.g.* the bond *trans* to Cl is 2.125 (5) Å compared to 2.204 (4) Å for the bond *trans* to dinitrogen.

Fig. 1. View of the title complex with displacement ellipsoids drawn at the 50% probability level. H atoms are omitted.

Acta Crystallographica Section C ISSN 0108-2701 ©1994